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A computational study is performed of the transport of a particulate suspension
through a corrugated tube using a discrete-element method (DEM). The tube is
axisymmetric with a radius that varies sinusoidally along the tube length, which,
in the presence of a mean suspension flow, leads to periodic inward and outward
acceleration of the advected particles. The oscillations in radial acceleration and
straining rate lead to a net radial drift, with mean acceleration measuring about an
order of magnitude smaller than the instantaneous radial acceleration, which over
time focuses small particles within the tube. The foundations of particle focusing
in this flow are examined analytically using lubrication theory, together with a low-
Stokes-number approximation for the particle drift. This lubrication-theory solution
provides the basic scaling for how the particle drift will vary with wave amplitude
and wavelength. Computations are then performed using a finite-volume method for
a fluid flow in the tube at higher Reynolds numbers over a range of amplitudes,
wavelengths and Reynolds numbers, examining the effect of each of these variables
on the averaged radial fluid acceleration. A DEM is used to simulate particle
behaviour at finite Stokes numbers, and the results are compared to an asymptotic
approximation valid for low Stokes numbers. At low tube Reynolds number (e.g.
Re = 10), the drift velocity induced by the tube corrugations focuses the particles onto
the tube centreline, in accordance with the low-Stokes-number approximation based
on the axial-averaged fluid radial acceleration. At higher tube Reynolds numbers
(e.g. Re = 100), the correlation between the particle radial oscillation and the fluid
acceleration field leads the outermost particles to drift into a ring at a finite radius
from the tube centre, with little net motion of the particles in the innermost part of
the tube. At larger Stokes numbers, particles can be dispersed to the outer regions
of the tube due to particle outward dispersion from the large instantaneous radial
acceleration. The effects of eddy formation within the corrugation crests on particle
focusing are also examined.
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1. Introduction
Corrugated tubes and channel flows are commonly used for enhancement of fluid

mixing and heat and mass transfer in laminar-flow fields. Extensive studies have been
performed to examine flow regimes, fluid mixing and heat-transfer enhancement
for a flow in two-dimensional symmetric corrugated channels (Nishimura et al.
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1990; Guzmán & Amon 1994, 1996; Rush, Newell & Jacobi 1999; Kim 2001;
Nieno & Nobile 2001; Mahmud, Islam & Mamun 2002; Oviedo-Tolentino et al.
2008), axisymmetric corrugated tubes (Savvides & Gerrard 1984) and two-dimensional
antisymmetric corrugated channels (Asako & Faghri 1987; Gschwind, Regele &
Kottke 1995; Rush et al. 1999; Vasudeviah & Balamurugan 2001; Gradeck,
Hoareau & Lebouché 2005). For low Reynolds numbers or sufficiently small wall
slope, the flow remains attached and the straining rate on a fluid element oscillates as it
is advected along the channel (Vasudeviah & Balamurugan 2001). At higher Reynolds
number and/or higher wall slope, a recirculating separated region exists within the
crest of each corrugation wave (Mahmud et al. 2002). As the flow rate is varied, these
separated regions display a rich array of flow regimes, starting with a steady-flow
condition and passing through periodic, quasi-periodic and finally chaotic states as
the Reynolds number is increased (Amon, Guzmán & Morel 1996; Guzmán & Amon
1994, 1996). The ability of the oscillatory inlet flow rate to induce vortex shedding
and enhanced mixing is reported for both two-dimensional symmetric corrugated
channels (Sobey 1980; Stephanoff, Sobey & Bellhouse 1980; Nishimura et al. 1989;
Nishimura & Kawamura 1995) and axisymmetric corrugated tubes (Ralph 1986; Lee,
Kang & Lim 1999). Conditions for instability of corrugated channel flows have been
reported in both theoretical and experimental/computational studies (Cho, Kim &
Shin 1998; Selvarajan, Tulapurkara & Ram 1999; Cabal, Szumbarski & Floryan 2002;
Asai & Floryan 2006). Instability of a particle-laden suspension flow in a wavy-walled
channel is examined by Usha, Senthilkumar & Tulapurkara (2005) using a two-phase
continuum theory; however, this paper does not consider particle migration in the
channel.

Many applications of corrugated tubes or channel flows involve transport of
a two-phase aerosol or aqueous suspension. For instance, aerosol transport of dust
through a radiator channel can sometimes lead cooling system fouling for construction
machinery working in dusty environments. A common application of corrugated tubes
is collapsible plastic or metallic ducts, which are used, for instance, for dryer ventilation
lines and are prone to increased resistance and clogging due to dust deposition.
There are several biological applications involving passage of aqueous particle or cell
suspensions through corrugated tubes, e.g. in transport of the intestinal fluid (chyme)
through the colon, which is formed of periodic ‘haustral pockets’ positioned along
its length (Putz & Pabst 2000). Other cases involving a particle suspension flow in
channels and tubes occur in algae production in tubular bioreactors (Christi 2007;
Sastre et al. 2007) and micro-fluidic particle and cell cytometry systems (Ormerod
1999).

Particle inertial focusing refers to the hydrodynamic-induced drift of particles to
certain preferential locations of a micro-channel flow in a manner that is dependent
on the particle inertia. Di Carlo et al. (2007) report the presence of a continuous
inertial focusing of 1–10 µm diameter particles in a suspension flowing through a
stationary antisymmetric corrugated micro-channel with repeated S-shaped curves
to form a continuous undulating waveform. Choi et al. (2008) and Choi & Park
(2008) present a hydrodynamic focusing method based on the flow response and the
resulting particle drift induced by a series of obstacles forming V-shaped patterns
along different walls of the micro-channel. Other hydrodynamic focusing methods
based on the flow response to an array of obstacles placed in the micro-channel
have been proposed by Huang et al. (2004) and Davis et al. (2006). In all these
hydrodynamic focusing systems, the particles are exposed to an alternating series of
positive and negative straining as they pass by each obstacle.
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Figure 1. Schematic of the corrugated tube flow, showing the mean tube radius H, wave
amplitude A and wavelength λ= 2π/k.

Recently, Marshall (2009a) showed that a hydrodynamic focusing (or clustering)
can be induced when particles are exposed to an oscillating straining field (in the
particle frame), causing particles to drift towards the nodal points of the straining
field. By using the low-Stokes-number approximation for fluid drift velocity proposed
by Ferry & Balachandar (2003), which yields the result that the particle drift is
proportional to the negative of the fluid acceleration, this oscillatory clustering
phenomenon can be related to the non-zero time average of the fluid convective
acceleration. A theoretical formulation for this phenomenon was presented, which
reduces the particle motion in the oscillating straining field to a damped Mathieu
equation, and which subsequently predicts both the particle drift rate and the stability
limitations on clustering. The method was applied to examine particle drift in a
peristaltic channel flow, in which case particles drift towards the nodal points of a
standing peristaltic wave.

The current study seeks to understand the implications of the oscillatory clustering
mechanism for problems involving a particulate suspension flow through an
axisymmetric corrugated tube. The tube corrugations induce an oscillatory straining
on particles advected through the tube, centred on the tube axis. The oscillatory
clustering theory of Marshall (2009a) would therefore suggest that the particles will
drift towards the tube axis. The current paper demonstrates that indeed particles
do drift towards the tube axis at low flow Reynolds numbers, but at higher flow
Reynolds numbers, the rate of oscillatory clustering within the central part of the
tube is greatly reduced, in part due to the effects of flow separation within the furrow
regions.

The problem of particle drift in a lubrication flow through a corrugated tube is
examined analytically in § 2 using an approximation of low particle Stokes number.
While this analysis is highly simplified, it illustrates the basic mechanism underlying
the particle-focusing phenomenon and provides a scaling for the rate of focusing in
the optimal case. The computational method used for cases with larger Reynolds
and Stokes numbers is described in § 3. Particle focusing at moderate flow Reynolds
number (ReF = 10) is examined in § 4 for a range of corrugation-wave amplitudes and
wavelengths. Ring formation of particles at higher flow Reynolds number (ReF = 100)
is discussed in § 5. Conclusions are given in § 6.

2. Collisionless particle transport at low tube Reynolds and Stokes numbers
We consider an axisymmetric incompressible flow with velocity u = u(r, z)er +

w(r, z)ez in a corrugated tube with radius h(z) = H + A cos(kz). A schematic of the
corrugated tube flow is shown in figure 1, showing the nominal tube radius H, the
wave amplitude A, the wavelength λ=2π/k and the mean axial velocity W. At small
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flow Reynolds number (ReF ≡ ρWH/µ � 1) and small slope (kA � 1), lubrication
theory can be used to approximate the governing equations for the flow as
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where γ (z) ≡ ∂p/∂z, and ρ and µ are the fluid density and viscosity, respectively. In
(2.1), the flow Reynolds number is assumed to be sufficiently small that the pressure
gradient is balanced by the viscous shear term, and the fluid inertia is negligible.
Integration of (2.1) yields a solution for the velocity components as

w(r, z) = −γ (z)

4µ
[h2(z) − r2], (2.2a)
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4µ
h
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+
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16µ
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dγ

dz
. (2.2b)

Applying the no-slip condition at r = h(z), (2.2b) yields the restriction

h4γ = C, (2.3)

where C is a constant of integration. The average velocity over a cross-section of the
tube is obtained using (2.1) and (2.3) as

WC(z) ≡ 2

h2

∫ h(z)

0

w(r, z)r dr = − C

8µ h2(z)
. (2.4)

A nominal axial velocity is defined by W ≡ −C/8µH 2. Non-dimensionalizing u and
w by W and non-dimensionalizing r, h and z by H yields the dimensionless velocity
field as

w′ =
2

h′2 [1 − (r ′/h′)2], u′ = −2r ′αη

h′3 [1 − (r ′/h′)2] sin(αz′), (2.5)

where α ≡ kH , η ≡ A/H and a prime denotes a dimensionless variable. From these
definitions, we note that the product αη = Ak, which is the scaling for the maximum
slope of the corrugation wave.

A simplified form of the particle momentum equation that balances particle inertia
with the Stokes drag for neutrally buoyant particles is given by

dv′

dt ′ = − 1

St
(v′ − u′), (2.6)

where v′ and u′ are the dimensionless particle velocity and fluid velocity at the
particle centroid location, respectively, and St is the particle Stokes number. The
Stokes number is related to the flow Reynolds number and the dimensionless particle
diameter ε = d/H by

St = ε2ReF /18χ, (2.7)

where χ ≡ ρ/ρP is the ratio of the fluid to particle density (χ = 1 for the neutrally
buoyant particles used in the current paper). Even though both the particle Reynolds
number and the Stokes number are assumed to be small, the fact that there are only
two terms in (2.6) implies that the particle inertia will always remain of the same order
of magnitude as the particle drag term, such that as the Stokes number approaches
zero, the particle velocity will approach that of the surrounding fluid flow. For flows
with low Stokes number, the so-called fast Euler approximation (Ferry & Balachandar
2003) can be employed, in which the particle acceleration dv/dt is approximated by
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the fluid material derivative Du/Dt = ∂u/∂t + (u · ∇)u. Under this approximation,
(2.6) can be rearranged to write

v′ = u′ − St
Du′

Dt ′ + O(St2). (2.8)

The dimensionless particle drift velocity u′
D is given by (2.8) to leading order in

St as u′
D = −St a′, where a′ = Du′/Dt ′ is the dimensionless fluid acceleration at the

instantaneous particle centroid location.
The radial position of each particle oscillates as the particle travels in the axial

direction over a distance of one furrow wavelength λ. We define r̄n as the average
radial position of particle n as it passes through a furrow, or

r̄n(zn) =
1

λ

∫ zn

zn−λ

rn(z) dz, (2.9)

where (rn, zn) denote the instantaneous radial and axial coordinates of particle n.
Variables averaged in accordance with (2.9) are henceforth referred to as furrow-
averaged quantities. Since zn is a function of time, the furrow-averaged radial position
can also be written as a function of time r̄n(t), the rate of change of which represents
the radial particle drift.

In the case that the tube corrugation amplitude is small, such that η � 1, the
acceleration a of the fluid at the particle centroid can be expanded in a Taylor series
about the furrow-averaged position r̄n(t), such that

a′(r ′
n) = a′(r̄ ′

n) + (r ′
n − r̄ ′

n)
∂a′

∂r ′ |r=r̄n + · · · , (2.10)

where the omitted terms are of higher order in the small parameter η than the two
retained terms. We define the first and second particle drift velocities, u′

D1 and u′
D2,

as the furrow-averaged particle velocities generated by the each of the terms on the
right-hand side of (2.10), respectively, such that

u′
D1 = −St a′(r̄ ′), u′

D2 = −St [(r ′ − r̄ ′)∂a′/∂r ′]. (2.11)

The first drift velocity is simply the average of the fluid acceleration along the tube
at the furrow-averaged radial position of the particle. The second drift velocity is
related to the correlation between the radial oscillation of the particle about the
furrow-averaged location and the variation of the radial-acceleration gradient. These
two terms of the Taylor series are found to scale similarly with the Stokes number
and the product αη.

In a steady flow, the definition of a streamline can be integrated to write r ′ −
r̄ ′ =

∫
(u′/w′) dz′. Substituting the dimensionless velocity field (2.5) into the fluid

material derivative and averaging over the tube perturbation wavelength yields the
first and second fluid radial drift velocities for the lubrication theory to leading order
in η as

u′
D1 = −2St(αη)2r̄ ′(1 − r̄ ′2)(3 − 7r̄ ′2), (2.12a)

u′
D2 = 2St(αη)2r̄ ′(1 − r̄ ′2)(1 − 5r̄ ′2). (2.12b)

Details of the derivation of (2.12a,b) are given in the Appendix. The first drift velocity
is negative (inward drift) for particles in the region 0< r ′ <

√
3/7 and positive (outward

drift) for
√

3/7 < r ′ < 1. The second drift velocity is positive for 0<r ′ < 1/
√

5 and
negative for 1/

√
5 < r ′ < 1.
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Figure 2. Plot showing first particle drift velocity u′
D1 (dashed line), second particle drift

velocity u′
D2 (dashed–dotted line) and net particle drift velocity u′

D = u′
D1 + u′

D2 (solid line) for
low-Stokes-number particle transport in a tube given by the lubrication theory. All velocities
are normalized by St (αη)2.

The net particle drift velocity u′
D is given by the sum of u′

D1 and u′
D2, which

is normalized by St (Ak)2 and plotted in figure 2 as a function of radius. Within
the central part of the tube (r ′ < 0.4), the magnitude of the first drift velocity is
significantly greater than that of the second drift velocity, and the direction of the
two velocities is opposite to each other. Each of the drift velocities change sign within
the outer part of the tube, and the magnitudes of the two drift velocities in this region
are similar. The net effect is to keep the total drift velocity negative throughout the
tube, implying that under the lubrication theory all particles will drift towards the
tube centre at a velocity that is proportional to St(Ak)2. The maximum particle drift
velocity occurs at approximately r ′ ∼= 0.45, for which

u′
D,max

∼= −1.14 St(kA)2. (2.13)

3. Computational method
For cases at finite Reynolds and Stokes numbers, the flow and particle transport

is computed using an axisymmetric finite-volume method for the fluid and a three-
dimensional discrete-element method (DEM) for the particles. Computations are
performed with neutrally buoyant particles having small concentrations (less than
0.5 %) and small particle mass loading; so two-way phase interactions can be neglected
(Crowe, Sommerfeld & Tsuji 1998). Throughout the remainder of this paper, all
numerical values of variables are non-dimensionalized using the nominal axial velocity
W and the nominal tube radius H for velocity and length scales, respectively. Below
we discuss the computational methods used for the fluid and particles separately,
including some examples of the flow structure in the tube.

3.1. Fluid-flow computational method and example results

Computations of the flow of an incompressible fluid in an axisymmetric corrugated
tube are performed using a finite-volume method with a block-structured grid (Lai
2000). The numerical method stores all dependent variables at the cell centres of a
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Figure 3. Contours of (a) radial velocity and (c) negative fluid acceleration for a case with
A =0.1, λ= 2 and ReF =100, which exhibits no flow recirculation. Dashed lines indicate
negative contour values and solid lines indicate positive contour values. Streamlines are shown
for (b) fluid velocity and (d ) negative fluid acceleration.

structured grid in the r–z plane, and uses a novel interpolation method to yield a
second-order accurate spatial approximation of the diffusive and convective fluxes
on the cell boundaries for arbitrary meshes. The PISO algorithm (pressure implicit
with splitting of operators; Issa 1985) is used to couple momentum and continuity
equations. Numerical stability is enhanced by weighting the time derivative between
second-order and first-order upwind approximations, with characteristically about
90–10 weighting ratio. The flow is periodic over an axial distance of 10 times the
nominal tube radius. The time step in all fluid-flow computations is held fixed at
�t = 0.01.

Cases exploring corrugation-wave amplitudes ranging from 0.1 to 0.5 and
wavelengths of 1–10 were examined with flow Reynolds numbers (ReF ) of both
10 and 100. Each fluid run was iterated until the pressure and velocity residuals
reached values of about 10−8. Several of the large-amplitude cases with ReF =100
exhibit recirculating flows within the tube corrugations, which reduces the magnitude
of oscillating straining experienced by the advected particles. All of the ReF =10 cases
exhibit no recirculation. Contours and streamlines of the radial velocity are shown in
figures 3(a) and 3(b) for a case with A= 0.1, λ= 2 and ReF = 100. This particular flow
does not exhibit a recirculation eddy in the wave peaks, but instead the flow remains
attached everywhere within the tube. The flow is typified by alternating regions of
outward and inward flow along the tube length. The transition between the outward
and inward flow results in a region of large outward-oriented acceleration just under
the wave trough, as seen in the contour plot and streamline plot of the negative
acceleration field in figures 3(c) and 3(d ). According to the drift velocity result
(2.8), which is valid for low Stokes numbers, the dimensionless negative acceleration
field is equal to the ratio of the dimensionless particle drift velocity divided by the
Stokes number; so the streamlines of negative acceleration are coincident with the
streamlines of the particle drift velocity. Consequently, this region of a large outward
radial acceleration under the wave trough corresponds to a region of a large inward-
directed particle drift. A weaker outward particle drift occurs downstream of the
wave crest, just upstream of the region of the inward radial flow.

The effect of recirculation within the tube is examined for a case with A= 0.2, λ= 2
and ReF = 100. The radial-velocity contours and streamlines are shown in figures 4(a)
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Figure 4. Contours of (a) radial velocity and (c) negative fluid acceleration for a case with
A = 0.2, λ= 2 and ReF = 100, exhibiting recirculation within the outer parts of the tube.
Dashed lines indicate negative contour values and solid lines indicate positive contour values.
Streamlines are shown for (b) fluid velocity and (d ) negative acceleration.

and 4(b). This flow exhibits a recirculation in the furrows of the channel, as most
easily observed in the streamline plot in figure 4(b), although the velocity magnitude
within this recirculating region is very low. The larger value of the wave amplitude
results in higher magnitude of the radial-velocity component and radial acceleration
compared to the A= 0.1 case. While there are regions of both inward and outward
particle drift, the regions of the inward particle drift have larger magnitude than those
of the outward drift, as was also observed for the case with no recirculating flow.

Grid independence of the fluid-flow computations is examined by comparing the
radial acceleration averaged across the tube length. Though quantities such as velocity
converge with a relatively coarse grid, quantities that are averaged along the tube
axis (such as the axially averaged acceleration, which is used in the first particle drift
velocity) require a much finer grid to achieve convergence. In part, this difference is due
to the fact that the average fluid acceleration is about two orders of magnitude smaller
than the instantaneous acceleration. A representative grid geometry of amplitude
A= 0.1 and wavelength λ=2, with a Reynolds number of 100, was utilized for the
grid sensitivity study. The sensitivity study examined the effect of grid density on the
average acceleration values using five different grids, labelled grid A (1200 × 50 points),
grid B (1800 × 100 points), grid C (2400 × 150 points), grid D (3000 × 200 points)
and grid E (4050 × 300 points), all over a domain covering the region 0 � r � 1.1 and
0 � z � 10. A plot of the average radial acceleration for these five grids is shown in
figure 5. The peak value of the average acceleration for grid D was found to be within
1.3 % of that for the most refined grid E. All of the computations in the paper are
performed using grid resolution similar to that in grid D.

As a further check on numerical error, the average radial velocity along each
axial line of the grid is computed. Theoretically, the axially averaged radial velocity
should be zero in a periodic flow field. While the computed average radial velocity
is small (less than 0.2 % of the peak radial-velocity values), the drift induced by
non-zero average radial velocity is comparable to the estimated particle radial drift
given by (2.8), since both the fluid axially averaged radial acceleration and the Stokes
numbers are small. Potential errors induced by the non-zero average radial velocity
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Figure 5. Grid sensitivity study showing the axially averaged radial acceleration across the
interrogation region as a function of radius for grids A–E. The coarsest grid (grid A) is
indicated using a dashed line.

are corrected by subtracting the axially averaged radial velocity from the local radial
velocity at each grid point. Computations performed both with and without this
correction are found to exhibit no discernable difference for the ReF = 10 case, but
there are some slight differences for the ReF = 100 case due to the very small average
radial accelerations near the tube centre.

3.2. Discrete-element method for particle transport

A DEM is used to examine particle transport in a corrugated tube at finite
Stokes number. The DEM has been presented in several previous papers (Marshall
2006, 2007, 2009b), and so only a very brief description is given here. The
computational method uses a multiple time step algorithm, in which the fluid time
step �t = O(H/W ), the particle time step �tp = O(d/W ) and the collision time step
�tc = O(d(ρ2

p/E2
pW )1/5) satisfy �t > �tp >�tc. Here d is the particle diameter, ρp is

the particle density and Ep is the particle elastic modulus. The method follows the
motion of individual particles in the three-dimensional fluid flow by solution of the
particle momentum and angular momentum equations

m
dv

dt
= FF + FA, I

dΩ

dt
= MF + MA, (3.1)

under forces and torques induced by the fluid flow (FF and MF ) and by the particle
collision (FA and MA). In these equations, m is the particle mass and I is the moment
of inertia. The dominant fluid force is the drag force, approximated by a modified
form of the Stokes drag law

Fd = −3π dµ (v − u) f, (3.2)

where v and u are the particle and local fluid velocities and f is a friction factor that
accounts for the effect of local particle crowding, which takes on the value f =1 for
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an isolated sphere. We use a correlation of Di Felice (1994) for f as a function of
the local particle concentration c and the particle Reynolds number Rep = |v − u|d/ν.
The associated fluid torque arises from a difference in the rotation rate of the particle
and the local fluid region and is given by

MF = −πµd3
(
Ω − 1

2
ω

)
, (3.3)

where Ω is the particle rotation rate and ω is the local fluid vorticity vector. In
addition to the drag force, the fluid-induced forces also include the lift force (Saffman
1965, 1968), the Magnus force (Rubinow & Keller 1961) and the added-mass and
pressure-gradient forces.

Particle collisions are simulated by employing a soft-sphere collision model, where
each collision includes a normal force Fn along the line of collision and frictional
resistances for sliding and twisting motions of the particles, such that for a particle
of radius ri , we can write

FA = Fnn + Fs tS, MA = riFs(n × tS) + Mt n. (3.4)

The normal vector n is written in terms of the centroids xi and xj of two colliding
particles as

n = (xj − xi)/|xj − xi |. (3.5)

The unit vector tS ≡ vS/|vS | indicates the direction of sliding between the two
particles, where the slip velocity vS is defined by vS = vR − (vR · n)n + riΩ i × n +
rjΩj × n and vR = vi − vj is the particle relative velocity. There is no adhesive force
between the particles and no rolling resistance. The normal force Fn is composed of
the elastic force Fne and a dissipative force Fnd . The Hertz (1882) expression gives the
elastic part of the normal force as

Fne = −kNδN = −Kδ
3/2
N , (3.6)

where K = (4/3)E
√

R and δN = ri + rj − |xi − xj | is the particle overlap. The particle
effective radius and elastic modulus, R and E, are defined by

1

R
≡ 1

ri

+
1

rj

,
1

E
≡ 1 − σ 2

i

Ei

+
1 − σ 2

j

Ej

, (3.7)

where σi and σj are the Poisson ratios, and Ei and Ej are the elastic moduli of the
individual particles. The dissipation force Fnd is given by

Fnd = −ηN vR · n, (3.8)

where ηN is the normal friction coefficient. Tsuji, Tanaka & Ishida (1992) propose an
expression for ηN of the form

ηN = α (mkN )1/2, (3.9)

where the coefficient α is written as a function of the coefficient of restitution e. In the
current paper, the Stokes number is sufficiently small that we set e =0, in accordance
with the experimental results of Joseph et al. (2001).

We use a spring–dashpot–slider model for the sliding resistance proposed by
Cundall & Strack (1979), in which the tangential sliding force Fs is first absorbed
by the spring and dashpot until its magnitude reaches a critical value Fcrit = µf |Fn|.
A rotational form of the spring–dashpot model is used for the twisting resistance
(Marshall 2009b). Since small particles tend not to slip very much upon collision, we
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Case ε St ReF Rep,nom A c0

A 0.12 0.008 10 0.01 0.2 0.005
B 0.02 0.002 100 0.004 0.2 0.0006
C 0.02 0.002 100 0.004 0.1 0.0006

Table 1. Parameter values for DEM simulations, including the dimensionless particle diameter,
the Stokes number, the flow Reynolds number, the nominal particle Reynolds number, the
dimensionless corrugation-wave amplitude and the nominal particle concentration. All cases
reported are for neutrally buoyant particles (χ = 1) with corrugation wavelength λ= 2.

refer to our previous papers (Marshall 2006; Marshall 2009b) for details of the slip
and twisting resistance forces and torques.

4. Particle focusing at moderate Reynolds number (ReF = 10)

The DEM calculations are initialized by placing particles in an array in the tube
with random initial velocities. A preliminary calculation is then performed with no
flow in the tube and no fluid drag on the particles, during which time the particles
are allowed to bounce around within the tube until they achieve a state in which
the concentration profile is essentially uniform. In some cases, the initialization is
performed within the entire corrugated tube, while in other cases, where we wish to
focus on the particle transport within the central portion of the tube, the initialization
is performed for a tube of constant radius with value less than the minimum wall
position of the corrugated tube. The results of this preliminary calculation are then
used as the initial condition for the DEM simulations with the corrugated tube.

A listing of parameters used for all DEM calculations is given in table 1. In
addition to the flow Reynolds number and the Stokes number, we list a nominal
particle Reynolds number Rep,nom = St εReF . The instantaneous particle Reynolds
number Rep = |v − u|d/ν will vary with time for each particle depending on the
current value of the relative velocity. The nominal particle Reynolds number gives
a value that is characteristic of the particles in the flow based on the estimate
|v − u| =O(St U ) for the relative velocity at low Stokes number (Crowe et al. 1998).
For all cases, the nominal particle Reynolds number is very small.

Results of a DEM simulation for a case with Re =10 are shown in figure 6 for
case A in table 1. The particle diameter in this computation (ε = 0.12) is chosen
to be fairly large in order to yield a sufficiently large value of the Stokes number
(St = 0.008) that particle focusing will be observed over the computational period.
The corrugation-wave amplitude (A= 0.2) is selected to be fairly large for the same
reason. The particles are plotted in an end view, looking down the end of the tube,
at the initial time, at an intermediate time (t = 25) and at a much later time (t = 400)
after which the particles have achieved a state of statistical equilibrium. The nominal
dimensionless time for a particle to pass one furrow length is equal to the wavelength
(λ= 2). A solid circle and a dashed circle are used in figures 6(a)–6(c) to indicate the
innermost and outermost values of the tube radii, respectively, corresponding to the
trough (r = 0.8) and crest (r = 1.2) radii of the wall corrugations. For this particular
simulation, the particles are initialized within a uniform tube of radius r = 0.8 so as
to concentrate on the transport within the central part of the tube.

It is observed in figure 6 that the particles steadily drift towards the centre of the
tube. The particles close to the r =0.8 initialization radius contract quickly down to
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Figure 6. Time series showing inward particle drift for case A at times (a) t =0, (b) t = 25
and (c) t = 400. The dashed and solid lines represent the maximum and minimum locations of
the tube surface, corresponding to the wave crest and trough, respectively. (d ) A side view of
(c) the end configuration.

a radius just less than r = 0.5. It takes nearly 12 times longer for the particles to
then contract within a radius r =0.25 of the tube centre. The slow contraction as the
particles become more dense near the centre of the tube is primarily caused by the
radial variation in the particle drift velocity, but more frequent collisions also play a
role in mitigating the particle inward drift at large times. We note that the end-view
images in figure 6 make the particles appear much more concentrated than is actually
the case. In a side view, as seen in figure 6(d ), it is apparent that the particles are
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Figure 7. First drift velocity u′
D1 (long dashed line), second drift velocity u′

D2 (dashed–dotted
line) and sum u′

D1 + u′
D2 (solid line) normalized by St for case A.

spread out in a fairly low-concentration suspension along the tube axis, so that the
collisions are relatively infrequent.

A plot showing the radial variation of the first and second drift velocities, uD1 and
uD2, defined by (2.11), and the sum uD1+uD2 is given for this flow in figure 7, where we
divide the drift velocities by the Stokes number. We note that the corrugation-wave
amplitude for this case (A= 0.2) only marginally satisfies the requirement of small
amplitude required for the validity of the expansion (2.10). As was also observed
for the flow under the lubrication theory, the first drift velocity dominates within
the inner part of the tube, leading to a net inward drift of the particles. The two
drift velocities change sign in the middle region of the tube and the magnitude of
the second drift velocity increases until it is greater than the first drift velocity. The
net result is that the sum uD1 + uD2 exhibits two negative peaks: one in the inner
part of the tube and the other in the outer region of the tube. In-between, there is
a region within the interval 0.7 <r < 0.8 in which the net drift velocity changes sign
to become positive, indicating an outward drift. However, no indication of outward
drift is observed in the DEM computations for this case. The difference is likely due
to the neglect of higher order terms in η in the Taylor-series expression (2.10). We
also observe that there is a large radial variation in the total drift magnitude. For
instance, the value of the total drift velocity at r =0.65 is nearly 10 times larger than
that at r = 0.2. This large radial variation in drift velocity is the primary reason why
the rate of particle focusing slows down as particles approach the centre of the tube.

Figure 8 illustrates the effect on the first and second drift velocity terms as the wave
amplitude and wavelength are varied. The effect of wavelength can be examined by
comparing the two plots shown in figures 8(a) and 8(b), which are given for cases
with λ= 1 and 2, respectively. The overall form of the drift-velocity variation in the
two cases is similar. However, the case with smaller wavelength exhibits higher peak
values of drift-velocity magnitude, while the drift velocity within the centre region of
the tube (r < 0.5) is smaller than for the case with longer wavelength. It is therefore
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Figure 8. Plots showing the effect of wavelength and amplitude on the first and second
particle drift velocities, using the same line definitions as in figure 7. Cases are shown for
ReF =10 and (a) λ= 1 and A = 0.1 and (b) λ= 2 and A = 0.1.

expected that as wavelength decreases, particles will drift inwards more quickly from
the outer regions of the tube, but then take a longer time to focus once they are
in the central part of the tube. It is also noted that, like the case shown in figure 7,
the small-wavelength case exhibits a region of positive total drift velocity within the
interval 0.8 <r < 0.9, suggesting that particles initialized in the outer part of the tube
experience a barrier in passing into the central tube region. The effect of corrugation-
wave amplitude can be examined by comparing figures 7 and 8(b), both of which
have a wavelength of λ= 2, but different amplitudes. It is apparent that an increase
in amplitude drastically increases the magnitude of the drift velocity. For instance,
the peak in the negative total drift velocity occurring near r = 0.65 is about 4.5 times
larger for the A= 0.2 case than it is for the A= 0.1 case.

5. Particle focusing at higher Reynolds number (ReF = 100)

The effect of the flow Reynolds number was explored for a fixed tube geometry
with A= 0.1 and λ= 2, corresponding to the non-recirculating-flow case shown in
figure 2. The furrow-averaged radial acceleration ār (r̄), which is proportional to
the negative of the first drift velocity, is plotted in figure 9 for cases with flow
Reynolds numbers of 1, 10 and 100, as well as the lubrication-theory solution (2.12a),
which is essentially a zero-Reynolds-number solution. Consistent with our theoretical
derivation, the lubrication-theory result is truncated at r = 1, since the waves on the
tube are assumed to be small. We note that the ār (r̄) term dominates the inward drift
velocity in the centre region of the tube, as discussed in the previous section, and
hence the plot in figure 9 gives an indication of the influence of the flow Reynolds
number on the rate of inward particle drift. While all curves in figure 9 have the
same basic form, the value of ār (r̄) is observed to decrease markedly with increase
in the flow Reynolds number for a given tube geometry. For instance, the maximum
positive value of ār (r̄) is 0.2 for the lubrication theory (ReF = 0), but it is only 0.02
for the case with ReF = 100.

Results of a DEM simulation for a case with ReF = 100 and A= 0.2 (case B)
are given in figure 10, again showing an end view looking down the tube. Dashed
and solid lines represent the maximum and minimum locations of the tube surface
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Figure 9. Plots showing the effect of the Reynolds number on the furrow-averaged radial
acceleration (evaluated at a fixed radial location) for cases with A = 0.1 and λ= 2, and
flow Reynolds numbers of 100 (solid line), 10 (dashed–dotted line), 1 (dashed line) and the
lubrication-theory solution (dashed–double-dotted line).

waves. Particles are initialized within a tube of radius r = 0.8, with approximately
uniform concentration profile, using the same initialization procedure as described in
§ 4, for particles with diameter ε =0.02. The particles within the outer part of the
tube are initially observed to contract quickly inwards towards the tube centre, as
was observed for the ReF = 10 flows. However, at a radius of about r = 0.55, the
inward motion of these particles slows to such an extent that little further motion is
discernable in the computations. Particles at radial positions between the tube centre
and a radius of r = 0.55 are observed to advect down the tube with little observable
net radial movement within the computational time period. Since the particle field is
fairly axisymmetric, we can quantify the particle inward drift in time using a radial-
concentration profile. For instance, for the case shown in figure 10, the corresponding
concentration profiles are plotted in figure 11. The concentration is initially nearly
uniform across the tube. By t = 50, the outermost particles have drifted inwards to
form a concentration peak at about r =0.6, but there has been little change in the
concentration within the inner region of the tube. At times t = 600 and t =1900,

a sharp peak of particle concentration is observed at r = 0.55, with no significant
change in concentration between these two times.

The first and second drift velocities, normalized by the Stokes number, for the case
shown in figure 10 are plotted in figure 12, along with the total drift velocity. The
second drift velocity exhibits large peaks for cases with flow recirculation in the outer
part of the tube; so the plot in figure 12 focuses on the inner tube region r < 0.7.
As noted previously in this section, the magnitude of both of the drift velocities in
the region close to the tube centre is much smaller for the ReF = 100 case than it
is for cases with lower Reynolds number. The total drift velocity is observed to be
negative throughout the central region of the tube (r < 0.5), but to have a very small
magnitude, which is consistent with the negligible motion of the particles within the
centre part of the tube observed in the DEM simulation.
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Figure 10. Time series showing formation of a particle ring for case B at times (a) t = 0,
(b) t = 50, (c) t = 600 and (d ) t = 1900. The dashed and solid lines represent the maximum
and minimum locations of the tube surface, corresponding to the wave crest and trough,
respectively.

In order to examine the effect of corrugation amplitude on the particle-ring
formation, the computation described in figures 10 and 11 was repeated with a
smaller amplitude of A= 0.1 (case C). The concentration profiles for this case are
shown in figure 13 at the same four times as shown in figure 11. The particles in the
outer region of the tube exhibit the same tendency drift into a ring as observed for
the A= 0.2 case, but the rate of ring formation is substantially slower. This result is
consistent with the observation from the previous section for Re = 10 that the particle
drift velocity increases with increase in corrugation amplitude.

The transport of particles within the outer part of the tube is examined by repeating
the computation shown in figures 10 and 11 for a case where particles are initialized
everywhere within the corrugated tube, with an approximately uniform concentration
distribution. It is observed that most of the particles within the outer region drift
inwards to collect in the particle ring, as shown in figure 10. However, some particles
become trapped in the recirculating-flow regions within the furrows, and eventually
become trapped by the flow field against the tube wall. A plot of the fluid streamlines
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Figure 11. Concentration profiles for the case shown in figure 10, at the same four times.
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Figure 13. Concentration plots for case C at times (a) t = 0, (b) t =50, (c) t = 600 and (d )
t = 1900. Convergence to a particle ring is much slower than for the case shown in figure 11.

within one furrow is shown in figure 14(a), with a close-up schematic showing the
location in which particles become trapped given in figure 14(b) (for the region
indicated by a rectangle in figure 14a). A stagnation point exists at the wall between
the recirculation region and the bulk flow, near which particles tend to collect. Since no
adhesion force acts between the particles, this trapping effect is purely hydrodynamic.

The focusing effect exhibited by each of the cases examined is summarized in
figure 15, in which the root-mean-squared radial position of the particles is plotted
as a function of the nominal number of furrows traversed. It is apparent that
the ReF = 10 case focuses the particles much more quickly than do the cases with
ReF = 100, which is consistent with the rapid decrease in the first drift velocity with the
Reynolds number shown in figure 9. Comparing the two ReF = 100 cases, doubling of
the corrugation amplitude is observed to increase the particle-focusing rate by a factor
of approximately 4, as predicted by the lubrication-theory expressions (2.12a,b). All
cases exhibit a relatively rapid initial focusing within the first 200 furrows traversed,
followed by much slower further focusing. This observation suggests that it might be
beneficial, in practice, to design a device in which extraction of the particle-rich fluid
at the centre of the tube is repeated at regular intervals along the tube length, rather
than only at the end of the corrugated tube section.

It is noted that despite certain superficial similarities, the physical process driving
the particle-focusing phenomenon reported in the current study is entirely different
from particle migration that is sometimes observed in straight tubes, such as
the Segre–Silberberg effect (Segre & Silberberg 1962) or the effects of shear-
induced migration caused by particle collisions (Leighton & Acrivos 1987). The
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Figure 14. Schematic of particles initialized within the furrows being caught on the
downstream constriction for case B. The close-up in (b) shows the locations of particles
caught on the outer tube surface within the insert region in (a) (indicated by a rectangle).
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Figure 15. Root-mean-square particle radius as a function of nominal number of furrows
traversed for case A (solid line), case B (dashed–double-dotted line) and case C (dashed line).

Segre–Silberburg effect, in which particles are observed to migrate to a radius of
about 0.6 times the tube radius, occurs due to inertial effects in the flow about
the particles (Ho & Leal 1974). While inertia is always present to some extent,
experimental results by Han et al. (1999) indicate that this effect is so slow as to
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often not be discernable for the particle Reynolds numbers below about 0.2. Shear-
induced migration due to particle collisions causes particles to drift to the low-shear
region near the tube centre. However, experimental results by Hampton et al. (1997)
and others at low particle Reynolds numbers show that shear-induced diffusion has
negligible influence at particle concentrations of 10 % or less. For the present study,
the particle concentration is 0.5 % or lower and the particle Reynolds number is 0.01
or lower for all cases. We have repeated a number of the computations reported
in this study for a straight tube and have not been able to identify any particle
migration, which is in agreement with findings from the literature cited above for the
flow at low concentrations and particle Reynolds numbers.

6. Conclusions
Focusing of particles in a suspension flow down a corrugated axisymmetric tube

has been investigated in this paper. At low flow Reynolds numbers, the particles
are observed to drift towards the centre of the tube at a rate that is proportional
to the Stokes number and the square of the tube maximum corrugation-wave slope.
The particle drift is governed by the sum of two competing drift velocities, one of
which is proportional to the axial average of the fluid radial acceleration and the
other of which is proportional to the average of the particle radial deviation from
its averaged position times the gradient of the fluid radial acceleration. The first
of these drift velocities tends to move particles inwards within the inner part of
the tube and outwards within the outer part of the tube, whereas the second drift
velocity tends to do the opposite. The rate of particle drift is observed to increase
markedly with increase in the amplitude of the tube-wall corrugations, but it decreases
with increase in the flow Reynolds number. Computations are performed for flow
Reynolds numbers of 10 and 100 using a DEM. Consistent with the theoretical
estimates for drift velocities, the computations indicate particles drifting inwards and
collecting at the tube centre for the ReF = 10 case. For the ReF = 100 case, particles
in the outermost regions of the tube drift inwards to form a ring of relatively higher
concentration at a radius of about 55 % of the tube nominal radius. Particles within
the inner part of the tube exhibit almost no net drift for this high-Reynolds-number
case.

The phenomenon reported in the current paper is shown to be distinct from the
well-known Segre–Silberberg effect or other types of particle migration observed
for straight tubes. Specifically, the particle focusing discussed in this paper is not
observed in flows with straight tubes at the low values of the particle Reynolds
number and the particle concentration used in these computations. The observation
from the lubrication-theory solution that the rate of particle focusing is proportional
to the square of the corrugation-wave amplitude is observed to approximately hold
in finite-volume/DEM simulations at higher flow Reynolds number (e.g. ReF =
100).

The particle-focusing phenomenon reported in this paper might be of use for
separation of particles from a suspension by passage of the suspension down a
corrugated tube. Such a device might be of use, for instance, in separation of algae
from a suspension or in the particle and cell separation problems that arise in micro-
fluidic assay systems. However, to be effective, the tube flow would need to be confined
to low Reynolds numbers and the section of the tube would need to be sufficiently
long to allow the particle focusing to develop. The lubrication theory developed in
§ 2 can be used to obtain an estimate for the required tube length under different
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conditions, but it should be noted that the particle focusing developed with the
lubrication theory is a best-case (zero-Reynolds-number) scenario. As demonstrated
in this paper, the rate of particle focusing is significantly slowed at finite Reynolds
numbers.

This study was supported by the US Department of Transportation (grant number
DTOS59-06-G-00048) and by Vermont EPSCoR (grant number EPS 0701410).

Appendix
The radial particle drift can be approximated to a leading order in the Stokes

number by (2.8), such that

uD
∼= −St

Du′

Dt ′ = −St

(
∂u′

∂t ′ + u′ ∂u′

∂r ′ + w′ ∂u′

∂z′

)
. (A 1)

Substituting (2.5) for u′ and w′ into (A 1) and retaining terms through second order
in η, with h′ = 1 + η cos(αz′), gives

u′ = −2αη r ′[1 − 3η cos(αz′)] sin(αz′) + 2αη r ′3[1 − 5η cos(αz′)] sin(αz′), (A 2a)

w′ = 2 {1 − r ′2[1 − 2η cos(αz′) + 3η2 cos2(αz′)]}[1 − 2η cos(αz′) + 3η2 cos2(αz′)],

(A 2b)

∂u′

∂r ′ = −2αη[1 − 3η cos(αz′)] sin(αz′) + 6r ′2αη[1 − 5η cos(αz′)] sin(αz′), (A 2c)

∂u′

∂z′ = −2(αη)2r ′(3 − 5r ′2) sin2(αz′) − 2α2η r ′[1 − 3η cos(αz′)] cos(αz′)

+ 2α2η r ′3[1 − 5η cos(αz′)] cos(αz′). (A 2d)

Computing the furrow average (2.9) of the radial convective acceleration terms from
(A 1) gives

u′ ∂u′

∂r ′ = 2(αη)2r ′(1 − r4′2 + 3r ′4), w′ ∂u′

∂z′ = 2(αη)2r ′(2 − 6r ′2 + 4r ′4). (A 3)

Summing these two terms and substituting into the first equation in (2.11) yields the
expression (2.12a) for the first drift velocity.

The second drift-velocity term contains two parts – a radial-position displacement
and a radial-acceleration gradient – both of which are O(η). The radial-position
displacement is obtained by substituting (A 2a) and (A 2b) for u′ and w′ into r ′ −
r̄ ′ =

∫
(u′/w′) dz′, performing the integration over z′, and retaining only terms of O(η)

to yield

r ′ − r̄ ′ = ηr ′ cos(αz′). (A 4)

The radial acceleration gradient is obtained by differentiating the two convective
acceleration terms in (A 1) to get

∂a′

∂r ′ =

(
∂u′

∂r ′

)2

+ u′ ∂
2u′

∂r ′2 +
∂w′

∂r ′
∂u′

∂z′ + w′ ∂2u′

∂r ′∂z′ . (A 5)
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The first two terms on the right-hand side of (A 5) are O(η)2 and are therefore
negligible. Retaining only the O(η) parts of the third and fourth terms yields

∂a′

∂r ′ = −4α2η(1 − r ′2)(1 − 5r ′2) cos(αz′). (A 6)

Substituting (A 4) and (A 6) into the second equation in (2.11) and performing the
furrow average operation (2.9) yields the expression (2.12b) for the second particle
drift velocity.
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